Inactivation of DNA-dependent protein kinase leads to spindle disruption and mitotic catastrophe with attenuated checkpoint protein 2 Phosphorylation in response to DNA damage.
نویسندگان
چکیده
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is well known as a critical component involving the nonhomologous end joining pathway of DNA double-strand breaks repair. Here, we showed another important role of DNA-PKcs in stabilizing spindle formation and preventing mitotic catastrophe in response to DNA damage. Inactivation of DNA-PKcs by small interfering RNA or specific inhibitor NU7026 resulted in an increased outcome of polyploidy after 2-Gy or 4-Gy irradiation. Simultaneously, a high incidence of multinucleated cells and multipolar spindles was detected in DNA-PKcs-deficient cells. Time-lapse video microscopy revealed that depression of DNA-PKcs results in mitotic catastrophe associated with mitotic progression failure in response to DNA damage. Moreover, DNA-PKcs inhibition led to a prolonged G(2)-M arrest and increased the outcome of aberrant spindles and mitotic catastrophe in Ataxia-telangiectasia mutated kinase (ATM)-deficient AT5BIVA cells. We have also revealed the localizations of phosphorylated DNA-PKcs/T2609 at the centrosomes, kinetochores, and midbody during mitosis. We have found that the association of DNA-PKcs and checkpoint kinase 2 (Chk2) is driven by Ku70/80 heterodimer. Inactivation of DNA-PKcs strikingly attenuated the ionizing radiation-induced phosphorylation of Chk2/T68 in both ATM-efficient and ATM-deficient cells. Chk2/p-T68 was also shown to localize at the centrosomes and midbody. These results reveal an important role of DNA-PKcs on stabilizing spindle formation and preventing mitotic catastrophe in response to DNA damage and provide another prospect for understanding the mechanism coupling DNA repair and the regulation of mitotic progression.
منابع مشابه
A major role for mitotic CDC2 kinase inactivation in the establishment of the mitotic DNA damage checkpoint.
Cdc2 kinase is inactivated when DNA damage occurs during the spindle assembly checkpoint. Here, we show that the level of mitotic Bloom syndrome protein phosphorylation reflects the level of cdc2 activity. A complete inactivation of cdc2 by either introduction of DNA double-strand breaks or roscovitine treatment prevents exit from mitosis. Thus, mitotic cdc2 inactivation plays a major role in t...
متن کاملDeterminants of mitotic catastrophe on abrogation of the G2 DNA damage checkpoint by UCN-01.
Genotoxic stress such as ionizing radiation halts entry into mitosis by activation of the G(2) DNA damage checkpoint. The CHK1 inhibitor 7-hydroxystaurosporine (UCN-01) can bypass the checkpoint and induce unscheduled mitosis in irradiated cells. Precisely, how cells behave following checkpoint abrogation remains to be defined. In this study, we tracked the fates of individual cells after check...
متن کاملPap1+ confers microtubule damage resistance to mut2a, an extragenic suppressor of the rad26:4A allele in S. pombe.
The DNA structure checkpoint protein Rad26ATRIP is also required for an interphase microtubule damage response. This checkpoint delays spindle pole body separation and entry into mitosis following treatment of cells with microtubule poisons. This checkpoint requires cytoplasmic Rad26ATRIP, which is compromised by the rad26:4A allele that inhibits cytoplasmic accum...
متن کاملMechanism of regulation of protein Kinase Aurora A in response to Mitotic DNA damage
Mitosis is a highly ordered collection of events that ensures that the duplicated genome is distributed to the daughter cells equally. A failure to do so results in loss of genetic information leading to aneuploidy, a condition frequently associated with cancer. Several mitotic kinases are targets of the DNA damage checkpoint, among which Cdk1, Aurora A and Plk1 are the most significant. Aurora...
متن کاملDNA damage signaling in response to double-strand breaks during mitosis
The signaling cascade initiated in response to DNA double-strand breaks (DSBs) has been extensively investigated in interphase cells. Here, we show that mitotic cells treated with DSB-inducing agents activate a "primary" DNA damage response (DDR) comprised of early signaling events, including activation of the protein kinases ataxia telangiectasia mutated (ATM) and DNA-dependent protein kinase ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 70 9 شماره
صفحات -
تاریخ انتشار 2010